Description
mice/ scrapie strain C506M3 model data 
Dose Dead Survived Total
125 0 11 11
1250 1 9 10
12500 2 8 10

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 1.34 0.99 2 3.84 
0.32
5.99 
0.512
Beta Poisson 0.35 1 3.84 
0.554
Exponential is preferred to beta-Poisson; cannot reject good fit for exponential.

 

Optimized k parameter for the exponential model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
k 2.4E-05 1.00E-13 1.00E-13 7.23E-06 5.47E-05 5.81E-05 7.44E-05
ID50/LD50/ETC* 2.89E+04 9.32E+03 1.19E+04 1.27E+04 9.58E+04 6.92E+12 6.92E+12
*Not a parameter of the exponential model; however, it facilitates comparison with other models.

 

Parameter histogram for exponential model (uncertainty of the parameter)

Exponential model plot, with confidence bounds around optimized model

# of Doses
3.00
Μodel
LD50/ID50
2.89E+04
Dose Units
Response
Exposure Route
Contains Preferred Model
k
2.4E-05
Agent Strain
scrapie strain C506M3
Experiment ID
251
Host type
Description
hamsters/scrapie strain 263K model data 
Dose Dead Survived Total
200 0 40 40
2000 1 79 80
2E+04 9 71 80
2E+05 58 22 80
2E+06 29 1 30

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 14.5 12.6 4 3.84 
0.000382
9.49 
0.00576
Beta Poisson 1.92 3 7.81 
0.589
Beta-Poisson fits better than exponential; cannot reject good fit for beta-Poisson.

 

Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
α 1.76E+00 7.48E-01 8.76E-01 9.66E-01 1.44E+04 1.73E+04 2.08E+04
N50 1.04E+05 7.05E+04 7.83E+04 8.22E+04 1.34E+05 1.40E+05 1.55E+05

 

Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.

beta Poisson model plot, with confidence bounds around optimized model

# of Doses
5.00
Μodel
N50
1.04E+05
LD50/ID50
1.04E+05
Dose Units
Response
Exposure Route
Contains Preferred Model
a
1.76E+00
Agent Strain
scrapie strain 263k
Experiment ID
250
Host type
Description
Human Inaba Strain 569B  
Dose Infected Non-infected Total
10 0 2 2
1000 3 1 4
1E+04 11 2 13
1E+05 7 1 8
1E+06 21 2 23
1E+08 2 0 2

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 92.4 91.2 5 3.84 
0
11.1 
0
Beta Poisson 1.16 4 9.49 
0.885
Beta-Poisson fits better than exponential; cannot reject good fit for beta-Poisson.

 

Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
α 2.5E-01 1.14E-01 1.48E-01 1.66E-01 5.44E-01 6.55E-01 2.91E+00
N50 2.43E+02 1.88E+01 4.82E+01 6.35E+01 1.52E+03 2.08E+03 3.60E+03

 

Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.

beta Poisson model plot, with confidence bounds around optimized model

# of Doses
6.00
Μodel
N50
2.43E+02
LD50/ID50
2.43E+02
Dose Units
Response
Exposure Route
Contains Preferred Model
a
2.50E-01
Agent Strain
Inaba 569B
Experiment ID
249
Host type
Description
Mice/ Salmonella strain 533 data 
Dose Dead Survived Total
1E+04 20 180 200
1E+05 17 153 170
1E+06 11 29 40
3160000 6 24 30
1E+07 12 8 20
3.16E+07 17 3 20
1E+08 19 1 20

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 214 165 6 3.84 
0
12.6 
0
Beta Poisson 48.7 5 11.1 
2.56e-09
Neither the exponential nor beta-Poisson fits well; beta-Poisson is less bad.

 

Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
α 1.08E-01 6.19E-02 7.06E-02 7.52E-02 1.79E-01 1.98E-01 2.44E-01
N50 9.66E+06 1.93E+06 2.43E+06 2.82E+06 5.38E+07 8.11E+07 2.13E+08

 

Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.

beta Poisson model plot, with confidence bounds around optimized model

# of Doses
7.00
Μodel
N50
9.66E+06
LD50/ID50
9.66E+06
Dose Units
Response
Exposure Route
Contains Preferred Model
a
1.08E-01
Agent Strain
strain 533
Experiment ID
248
Host type
Description
Mice/ Salmonella strain 533 data 
Dose Dead Survived Total
603 6 36 42
1910 3 39 42
6030 7 35 42
19100 5 42 47
60300 6 34 40
191000 3 29 32
603000 6 20 26
1910000 7 7 14
6030000 7 5 12
1.91E+07 10 2 12
6.03E+07 13 0 13

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 193 146 10 3.84 
0
18.3 
0
Beta Poisson 47.5 9 16.9 
3.22e-07
Neither the exponential nor beta-Poisson fits well; beta-Poisson is less bad.

 

Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
α 6.21E-02 3.53E-02 4.06E-02 4.32E-02 1.09E-01 1.25E-01 1.80E-01
N50 3.46E+07 9.76E+05 1.69E+06 2.40E+06 9.41E+08 2.13E+09 1.34E+10

 

Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.

beta Poisson model plot, with confidence bounds around optimized model

# of Doses
11.00
Μodel
N50
3.46E+07
LD50/ID50
3.46E+07
Dose Units
Response
Exposure Route
Contains Preferred Model
a
6.21E-02
Agent Strain
strain 533
Experiment ID
247
Host type
Description
Mice/Salmonella strain 216 and 219 data 
Dose Dead Survived Total
5 7 8 15
25 4 11 15
125 7 8 15
630 9 6 15
3160 8 7 15
16000 13 2 15
8E+04 15 0 15
4E+05 15 0 15
2E+06 15 0 15
1E+07 15 0 15

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 133 113 9 3.84 
0
16.9 
0
Beta Poisson 20.5 8 15.5 
0.00846
Neither the exponential nor beta-Poisson fits well; beta-Poisson is less bad.

 

Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
α 2.1E-01 1.45E-01 1.58E-01 1.65E-01 2.92E-01 3.14E-01 3.63E-01
N50 4.98E+01 8.10E+00 1.40E+01 1.72E+01 1.31E+02 1.62E+02 2.34E+02

 

Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.

beta Poisson model plot, with confidence bounds around optimized model

# of Doses
10.00
Μodel
N50
4.98E+01
LD50/ID50
4.98E+01
Dose Units
Response
Exposure Route
Contains Preferred Model
a
2.1E-01
Agent Strain
strain 216 and 219
Experiment ID
246
Host type
Description
C57BL/6 Mice KHW Strain Data
Dose Infected Non-infected Total
5 0 3 3
45 1 5 6
450 6 2 8
4500 7 0 7
45000 7 0 7

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 0.155 0.0201 4 3.84 
0.887
9.49 
0.997
Beta Poisson 0.135 3 7.81 
0.987
Exponential is preferred to beta-Poisson; cannot reject good fit for exponential.

 

Optimized k parameter for the exponential model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
k 3.18E-03 1.05E-03 1.41E-03 1.63E-03 7.50E-03 7.54E-03 1.46E-02
ID50/LD50/ETC* 2.18E+02 4.74E+01 9.19E+01 9.25E+01 4.25E+02 4.91E+02 6.63E+02
*Not a parameter of the exponential model; however, it facilitates comparison with other models.

 

Parameter histogram for exponential model (uncertainty of the parameter)

Exponential model plot, with confidence bounds around optimized model

# of Doses
5.00
Μodel
LD50/ID50
2.18E+02
Dose Units
Response
Exposure Route
Contains Preferred Model
k
3.18E-03
Agent Strain
KHW
Experiment ID
245
Host type
Description
Rhesus monkey Data 
Dose Dead Survived Total
25 1 3 4
66 2 0 2
83 2 0 2
99 1 1 2
182 3 4 7
1111 1 1 2
1774 1 1 2
2287 1 1 2
2586 2 0 2
3166 1 1 2
5055 6 1 7
5519 2 0 2
5652 2 0 2
5669 1 0 1
7459 2 0 2
9199 1 1 2
10774 2 0 2
16790 1 1 2
41023 2 0 2
45498 1 2 3
53206 2 0 2
55195 2 0 2
131771 1 1 2
149175 2 0 2

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 137 113 23 3.84 
0
35.2 
0
Beta Poisson 24 22 33.9 
0.345
Beta-Poisson fits better than exponential; cannot reject good fit for beta-Poisson.

 

Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
α 1.45E-01 1.82E-02 2.72E-02 4.15E-02 2.59E-01 2.87E-01 3.49E-01
N50 5.01E+01 6.71E-12 6.31E-07 2.86E-03 2.62E+02 3.28E+02 4.87E+02

 

Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.

beta Poisson model plot, with confidence bounds around optimized model

# of Doses
24.00
Μodel
N50
5.01E+01
LD50/ID50
5.01E+01
Dose Units
Response
Exposure Route
Contains Preferred Model
a
1.45E-01
Agent Strain
NA
Experiment ID
244
Host type
Description
Guinea pigs/ Philadelphia 1 Strain model data
Dose Dead Survived Total
1E+04 1 4 5
15000 0 3 3
2E+04 5 2 7
5E+04 3 0 3
1E+05 5 0 5

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 5.85 -0.000131 4 3.84 
1
9.49 
0.211
Beta Poisson 5.85 3 7.81 
0.119
Exponential is preferred to beta-Poisson; cannot reject good fit for exponential.

 

Optimized k parameter for the exponential model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
k 4.17E-05 2.29E-05 2.68E-05 3.00E-05 5.87E-05 6.78E-05 7.86E-05
ID50/LD50/ETC* 1.66E+04 8.82E+03 1.02E+04 1.18E+04 2.31E+04 2.59E+04 3.03E+04
*Not a parameter of the exponential model; however, it facilitates comparison with other models.

 

Parameter histogram for exponential model (uncertainty of the parameter)

Exponential model plot, with confidence bounds around optimized model

# of Doses
5.00
Μodel
LD50/ID50
1.66E+04
Dose Units
Response
Exposure Route
Contains Preferred Model
k
4.17E-05
Agent Strain
Philadelphia 1
Experiment ID
243
Host type
Description
Dose response data
Dose Dead Survived Total
200 0 10 10
4000 1 9 10
1E+04 1 4 5
15000 0 3 3
2E+04 5 2 7
5E+04 12 0 12
5E+04 3 0 3
1E+05 5 0 5
4E+05 16 0 16

 

Goodness of fit and model selection
Model Deviance Δ Degrees 
of freedom
χ20.95,1 
p-value
χ20.95,m-k 
p-value
Exponential 8.92 -0.000282 8 3.84 
1
15.5 
0.349
Beta Poisson 8.92 7 14.1 
0.258
Exponential is preferred to beta-Poisson; cannot reject good fit for exponential.

 

Optimized k parameter for the exponential model, from 10000 bootstrap iterations
Parameter MLE estimate Percentiles
0.5% 2.5% 5% 95% 97.5% 99.5%
k 4.99E-05 3.55E-05 3.87E-05 3.95E-05 6.48E-05 6.76E-05 7.46E-05
ID50/LD50/ETC* 1.39E+04 9.29E+03 1.03E+04 1.07E+04 1.75E+04 1.79E+04 1.95E+04
*Not a parameter of the exponential model; however, it facilitates comparison with other models.

 

Parameter histogram for exponential model (uncertainty of the parameter)

Exponential model plot, with confidence bounds around optimized model

# of Doses
9.00
Μodel
LD50/ID50
1.39E+04
Dose Units
Response
Exposure Route
Contains Preferred Model
k
4.99E-05
Agent Strain
strain 74/81
Experiment ID
242, 243
Host type